BULGARIAN NATIONAL MATHEMATICAL OLYMPIAD FOR UNIVERSITY STUDENTS

Varna, 14-16 ${ }^{\text {th }}$ May, 2021
GROUPA

Problem 1. Let A be a real square matrix of n-th order, for which $\operatorname{det} A \neq 0$ and $A^{3}+A=\mathbf{O}$.
a) Solve the equation $X A=A^{-1}$.
b) Prove that $\left(\frac{1+i}{1-i}\right)^{2021}$ is a characteristic root (eigenvalue) of matrix A. Give an example of such a matrix of 2-nd order.
c) Is it possible for the order n of A to be 2021? Prove if it is not possible and if it is possible, give an example.
(\mathbf{O} is the zero matrix).
Solution: From the condition we have that $A\left(A^{2}+E\right)=\mathbf{O}(E$ is the identity matrix of n-th order $)$ and the matrix A is reversible. Therefore $A^{2}=-E$ and $A^{-1}=-A$.
a) The equation from the condition is equivalent to $X A=-A$.

A matrix is multiplied either by a matrix of appropriate dimension or by a number. So $X=-E$ or $X=-1$.

If λ is a characteristic root of A, then $\lambda^{3}+\lambda=0$ and $\lambda \neq 0 \quad(\operatorname{det} A \neq 0)$. Consequently $\lambda= \pm i$. Because it is a real matrix, its characteristic roots are two by two conjugated. In particular, each of the numbers i and $-i$ is a characteristic root.
b) $\left(\frac{1+i}{1-i}\right)^{2021}=\left(\frac{(1+i)^{2}}{2}\right)^{2021}=i^{2021}=i$ is a characteristic root. One matrix satisfying the condition is $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.
c) Because the characteristic roots of the matrix A are conjugated in pairs, its order n is an even number.

Problem 2. Let A and B be square matrices with real elements of order n, for which $A^{2}=A$, $B^{2}=B$ and $A B=B A$. Prove that $A B=\mathbf{O}$ if and only if $\mathbf{r}(A+B)=\mathbf{r}(A)+\mathbf{r}(B)$.
(\mathbf{O} is the zero matrix and $\mathbf{r}(A)$ is the rank of the matrix A)

Solution: Let φ and ψ are the linear operators in the space $\mathbb{V}=\mathbb{R}^{n}$ with matrices A and B in a standard basis of \mathbb{R}^{n} (for a vector column $v \in \mathbb{R}^{n} \varphi(v)=A v$ and $\psi(v)=B v$). So $\varphi^{2}=\varphi$,
$\psi^{2}=\psi \quad$ and $\quad \varphi \psi=\psi \varphi . \quad$ Let $\quad \mathbb{U}_{0}=\operatorname{Ker} \varphi \quad$ and $\quad \mathbb{U}_{1}=\operatorname{Ker}\left(\varphi-\mathbf{i d} \mathbf{d}_{\mathbb{V}}\right)=\operatorname{Im} \varphi . \quad$ Therefore $\mathbb{U}_{0} \oplus \mathbb{U}_{1}=\mathbb{V}\left(\right.$ for $v \in \mathbb{V} v=(v-\varphi(v))+\varphi(v)$ and $v-\varphi(v) \in \mathbb{U}_{0}, \varphi(v) \in \mathbb{U}_{1}$ and $\left.\mathbb{U}_{0} \cap \mathbb{U}_{1}=\{\mathbf{0}\}\right)$ and \mathbb{U}_{0} and \mathbb{U}_{1} are φ-invariant. Thus for φ a basis exists, in witch its matrix is diagonal with 0 and 1, i.e. A is similar to a diagonal matrix of 0 and 1 . Subspaces \mathbb{U}_{0} and \mathbb{U}_{1} are also ψ invariant.

- If $v \in \mathbb{U}_{0}$ then $\varphi(v)=\mathbf{0}$. Then $\varphi(\psi(v))=\psi(\varphi(v))=\psi(\mathbf{o})=\mathbf{o}$ and $\psi(v) \in \mathbb{U}_{0}$.
- If $v \in \mathbb{U}_{1}$ then $\varphi(v)=v$. Then $\varphi(\psi(v))=\psi(\varphi(v))=\psi(v)$ and $\psi(v) \in \mathbb{U}_{1}$.

Let ψ_{0} and ψ_{1} are the restrictions of ψ over \mathbb{U}_{0} and \mathbb{U}_{1} respectively. Then they will be linear operators in those subspaces for which $\psi_{0}^{2}=\psi_{0}$ and $\psi_{1}^{2}=\psi_{1}$ and, therefore, are diagonalized. This means that there is a basis in which matrices φ and ψ are diagonal with 0 and 1 on the diagonal. Let these be the matrices P and Q. Then there is a reversible matrix T such that $A=T P T^{-1}$ and $B=T Q T^{-1}$. Hence

$$
A B=\mathbf{O} \Leftrightarrow P Q=\mathbf{O}, \mathbf{r}(A)=\mathbf{r}(P), \mathbf{r}(B)=\mathbf{r}(Q) \text { и } \mathbf{r}(A+B)=\mathbf{r}(P+Q),
$$

i.e. without any restrictions we can assume that A and B are diagonal with 0 and 1 on the diagonal.

Obviously $\mathbf{r}(P+Q)=\mathbf{r}(P)+\mathbf{r}(Q)$ if and only if $p_{i i} q_{i i}=0$ for each $i=1,2$, n, which is equivalent to $P Q=\mathbf{O}$ (the ranks of the matrices P and Q are the number of their 1 on the diagonal).

Problem 3. The sequence $a_{0}=0$ and $a_{n}=2 n\left(a_{n-1}+1\right)$ is given for $n \geq 1$. Find:

$$
\sum_{n=1}^{\infty} \ln \left(1+\frac{1}{a_{n}}\right)
$$

Solution: Lets consider the partial sum

$$
\sum_{n=1}^{N} \ln \left(1+\frac{1}{a_{n}}\right)=\ln \prod_{n=1}^{N}\left(1+\frac{1}{a_{n}}\right)=\ln \frac{a_{N+1}}{2^{N+1}(N+1)!} .
$$

From the recurrent expression we obtain

$$
\frac{a_{N+1}}{2^{N+1}(N+1)!}=\frac{a_{N+1}}{2(N+1)} \frac{1}{2^{N} N!}=\frac{a_{N}+1}{2^{N} N!}=\frac{a_{N}}{2^{N} N!}+\frac{1}{2^{N} N!} .
$$

Inductive

$$
\frac{a_{N+1}}{2^{N+1}(N+1)!}=\sum_{k=0}^{N} \frac{1}{2^{k} k!} .
$$

Therefore

$$
\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \ln \left(1+\frac{1}{a_{n}}\right)=\ln \sum_{k=0}^{\infty} \frac{1}{2^{k} k!}=\ln \sqrt{e}=\frac{1}{2} .
$$

Problem 4. Let $a_{n}=\sum_{k=2 n}^{\infty} \frac{(-1)^{k}}{k}$.
a) Prove: $\int_{n}^{\infty} \frac{d x}{2 x(2 x+1)}<a_{n}<\int_{n-1}^{\infty} \frac{d x}{2 x(2 x+1)}$.
b) Find: $\lim _{n \rightarrow \infty} n a_{n}$.
c) If $\lim _{n \rightarrow \infty} n a_{n}=\alpha$, find: $\lim _{n \rightarrow \infty} n\left(n a_{n}-\alpha\right)$.

Solution:

a) Following from

$$
a_{n}=\sum_{k=n}^{\infty}\left(\frac{1}{2 k}-\frac{1}{2 k+1}\right)=\sum_{k=n}^{\infty} \frac{1}{2 k(2 k+1)}
$$

and inequalities

$$
\int_{k}^{k+1} \frac{d x}{2 x(2 x+1)}<\frac{1}{2 k(2 k+1)}<\int_{k-1}^{k} \frac{d x}{2 x(2 x+1)}
$$

b) From a) we have

$$
\int_{n}^{\infty} \frac{d x}{(2 x+1)^{2}}<\int_{n}^{\infty} \frac{d x}{2 x(2 x+1)}<a_{n}<\int_{n-1}^{\infty} \frac{d x}{2 x(2 x+1)}<\int_{n-1}^{\infty} \frac{d x}{(2 x)^{2}},
$$

i.e.

$$
\begin{gathered}
\frac{n}{2(2 n+1)}<n a_{n}<\frac{n}{4(n-1)} . \\
\lim _{n \rightarrow \infty} \frac{n}{2(2 n+1)}=\lim _{n \rightarrow \infty} \frac{n}{4(n-1)}=\frac{1}{4} \Rightarrow \lim _{n \rightarrow \infty} n a_{n}=\frac{1}{4} .
\end{gathered}
$$

c) We will estimate $\left|\sum_{k=n}^{\infty} \frac{1}{2 k(2 k+1)}-\int_{n-\frac{1}{2}}^{\infty} \frac{d x}{2 x(2 x+1)}\right|$.

$$
\begin{aligned}
& \int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \frac{d x}{2 x(2 x+1)}=\left.\frac{1}{2} \ln \frac{2 x}{2 x+1}\right|_{k-\frac{1}{2}} ^{k+\frac{1}{2}}=\frac{1}{2} \ln \frac{2 k^{2}+k}{2 k^{2}+k-1}= \\
& \quad=\frac{1}{2} \ln \left(1+\frac{1}{2 k^{2}+k-1}\right)=\frac{1}{2 k(2 k+1)}+\mathrm{O}\left(\frac{1}{k^{4}}\right)
\end{aligned}
$$

Then

$$
\left|\sum_{k=n}^{\infty} \frac{1}{2 k(2 k+1)}-\int_{n-\frac{1}{2}}^{\infty} \frac{d x}{2 x(2 x+1)}\right|=\mathrm{O}\left(\sum_{k=n}^{\infty} \frac{1}{k^{4}}\right)=\mathrm{O}\left(\frac{1}{n^{3}}\right) .
$$

Consequently

$$
\begin{gathered}
a_{n}=\int_{n-\frac{1}{2}}^{\infty} \frac{d x}{2 x(2 x+1)}+\mathrm{O}\left(\frac{1}{n^{3}}\right)=\frac{1}{2} \ln \frac{2 n}{2 n-1}+\mathrm{O}\left(\frac{1}{n^{3}}\right)= \\
=\frac{1}{2} \ln \left(1+\frac{1}{2 n-1}\right)+\mathrm{O}\left(\frac{1}{n^{3}}\right)=\frac{1}{2(2 n-1)}-\frac{1}{4(2 n-1)^{2}}+\mathrm{O}\left(\frac{1}{n^{3}}\right),
\end{gathered}
$$

whence

$$
\lim _{n \rightarrow \infty} n\left(n a_{n}-\frac{1}{4}\right)=\lim _{n \rightarrow \infty}\left(\frac{n^{2}-n}{4(2 n-1)^{2}}\right)=\frac{1}{16} .
$$

