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Problem 1. Let A  be a real square matrix of n -th order, for which 0det A  and O=3 AA  . 

а) Solve the equation 
1= AXA . 

b) Prove that 
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 is a characteristic root (eigenvalue) of matrix A . Give an example of 

such a matrix of 2-nd order. 

c) Is it possible for the order n  of A  to be 2021? Prove if it is not possible and if it is 

possible, give an example. 

(O is the zero matrix). 

 

Solution: From the condition we have that O=)( 2 EAA   (E is the identity matrix of n-th order) 

and the matrix A  is reversible. Therefore EA =2
 and AA  =1

.  

 

а) The equation from the condition is equivalent to AAX = . 

A matrix is multiplied either by a matrix of appropriate dimension or by a number. So 

EX =  or 1= X . 

If   is a characteristic root of A, then 0=3    and 0  ).0(det A  Consequently 

i= . Because it is a real matrix, its characteristic roots are two by two conjugated. In particular, 

each of the numbers i  and i  is a characteristic root.  
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10=A . 

 

c) Because the characteristic roots of the matrix A are conjugated in pairs, its order n  is an 

even number.  

 

Problem 2. Let A  and B  be square matrices with real elements of order n , for which AA =2
, 

BB =2
 and ABBA = . Prove that O=AB  if and only if )()(=)( BABA rrr  . 

(O is the zero matrix and )(Ar is the rank of the matrix A ) 

 

Solution: Let   and   are the linear operators in the space 
n =  with matrices A and B in a 

standard basis of 
n  (for a vector column 

nv   Avv =)(  and ( ) = ).v Bv  So  =2
, 



 =2
 and .=  Let Ker=0  and .Im=)(Ker=1   id  Therefore 

 =10  (for v )())((= vvvv    and 0)(  vv  , 
1)( v  and }{=10 0  ) 

and 0  and 
1  are  - invariant. Thus for   a basis exists, in witch its matrix is diagonal with 

0 and 1, i.e. A is similar to a diagonal matrix of 0 and 1. Subspaces 0  and 
1  are also  - 

invariant.  

 

• If 0v  then o=)(v . Then oo =)(=))((=))((  vv  and 0)( v . 

• If 
1v  then vv =)( . Then )(=))((=))(( vvv   and 

1)( v . 

 

Let 0  and 
1  are the restrictions of   over 0  and 

1  respectively. Then they will be 

linear operators in those subspaces for which 0

2

0 =  and 1

2

1 =  and, therefore, are 

diagonalized. This means that there is a basis in which matrices   and   are diagonal with 0 

and 1 on the diagonal. Let these be the matrices P  and Q . Then there is a reversible matrix T

such that 
1= TPTA  and 

1= TQTB . Hence  

O=AB  O=PQ , )(=)( PA rr , )(=)( QB rr  и )(=)( QPBA  rr , 

i.e. without any restrictions we can assume that A and B are diagonal with 0 and 1 on the diagonal. 

Obviously )()(=)( QPQP rrr   if and only if 0=iiiiqp  for each 1=i , 2, n , which is 

equivalent to O=PQ  (the ranks of the matrices P and Q are the number of their 1 on the 

diagonal). 

 

Problem 3. The sequence 0=0a  and 1)(2= 1 nn ana  is given for 1n . Find:  
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Solution: Lets consider the partial sum  
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From the recurrent expression we obtain  
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Solution:  

a) Following from 
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and inequalities 
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b) From a) we have 
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c) We will estimate 
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