BULGARIAN NATIONAL MATHEMATICAL OLYMPIAD FOR UNIVERSITY STUDENTS

Varna, 14-16th May, 2021

GROUP A

Problem 1. Let A be a real square matrix of *n*-th order, for which det $A \neq 0$ and $A^3 + A = \mathbf{O}$. a) Solve the equation $XA = A^{-1}$.

b) Prove that $\left(\frac{1+i}{1-i}\right)^{2021}$ is a characteristic root (eigenvalue) of matrix A. Give an example of such a matrix of 2-nd order.

c) Is it possible for the order n of A to be 2021? Prove if it is not possible and if it is possible, give an example.

(**O** is the zero matrix).

Solution: From the condition we have that $A(A^2 + E) = \mathbf{O}$ (*E* is the identity matrix of *n*-th order) and the matrix *A* is reversible. Therefore $A^2 = -E$ and $A^{-1} = -A$.

a) The equation from the condition is equivalent to X A = -A.

A matrix is multiplied either by a matrix of appropriate dimension or by a number. So X = -E or X = -1.

If λ is a characteristic root of A, then $\lambda^3 + \lambda = 0$ and $\lambda \neq 0$ (det $A \neq 0$). Consequently $\lambda = \pm i$. Because it is a real matrix, its characteristic roots are two by two conjugated. In particular, each of the numbers i and -i is a characteristic root.

b) $\left(\frac{1+i}{1-i}\right)^{2021} = \left(\frac{(1+i)^2}{2}\right)^{2021} = i^{2021} = i$ is a characteristic root. One matrix satisfying the condition is $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

c) Because the characteristic roots of the matrix A are conjugated in pairs, its order n is an even number.

Problem 2. Let A and B be square matrices with real elements of order n, for which $A^2 = A$, $B^2 = B$ and AB = BA. Prove that $AB = \mathbf{O}$ if and only if $\mathbf{r}(A+B) = \mathbf{r}(A) + \mathbf{r}(B)$.

(**O** is the zero matrix and $\mathbf{r}(A)$ is the rank of the matrix A)

Solution: Let φ and ψ are the linear operators in the space $\mathbb{V} = \mathbb{R}^n$ with matrices *A* and *B* in a standard basis of \mathbb{R}^n (for a vector column $v \in \mathbb{R}^n$ $\varphi(v) = Av$ and $\psi(v) = Bv$). So $\varphi^2 = \varphi$,

 $\psi^2 = \psi$ and $\varphi \psi = \psi \varphi$. Let $\mathbb{U}_0 = \operatorname{Ker} \varphi$ and $\mathbb{U}_1 = \operatorname{Ker}(\varphi - \mathbf{id}_{\mathbb{V}}) = \operatorname{Im} \varphi$. Therefore $\mathbb{U}_0 \oplus \mathbb{U}_1 = \mathbb{V}$ (for $v \in \mathbb{V}$ $v = (v - \varphi(v)) + \varphi(v)$ and $v - \varphi(v) \in \mathbb{U}_0$, $\varphi(v) \in \mathbb{U}_1$ and $\mathbb{U}_0 \cap \mathbb{U}_1 = \{\mathbf{0}\}$) and \mathbb{U}_0 and \mathbb{U}_1 are φ -invariant. Thus for φ a basis exists, in witch its matrix is diagonal with 0 and 1, i.e. *A* is similar to a diagonal matrix of 0 and 1. Subspaces \mathbb{U}_0 and \mathbb{U}_1 are also ψ -invariant.

• If $v \in \mathbb{U}_0$ then $\varphi(v) = \mathbf{o}$. Then $\varphi(\psi(v)) = \psi(\varphi(v)) = \psi(\mathbf{o}) = \mathbf{o}$ and $\psi(v) \in \mathbb{U}_0$. • If $v \in \mathbb{U}_1$ then $\varphi(v) = v$. Then $\varphi(\psi(v)) = \psi(\varphi(v)) = \psi(v)$ and $\psi(v) \in \mathbb{U}_1$.

Let ψ_0 and ψ_1 are the restrictions of ψ over \mathbb{U}_0 and \mathbb{U}_1 respectively. Then they will be linear operators in those subspaces for which $\psi_0^2 = \psi_0$ and $\psi_1^2 = \psi_1$ and, therefore, are diagonalized. This means that there is a basis in which matrices φ and ψ are diagonal with 0 and 1 on the diagonal. Let these be the matrices P and Q. Then there is a reversible matrix Tsuch that $A = TPT^{-1}$ and $B = TQT^{-1}$. Hence

 $AB = \mathbf{O} \Leftrightarrow PQ = \mathbf{O}, \ \mathbf{r}(A) = \mathbf{r}(P), \ \mathbf{r}(B) = \mathbf{r}(Q) \ \mathbf{u} \ \mathbf{r}(A+B) = \mathbf{r}(P+Q),$

i.e. without any restrictions we can assume that A and B are diagonal with 0 and 1 on the diagonal.

Obviously $\mathbf{r}(P+Q) = \mathbf{r}(P) + \mathbf{r}(Q)$ if and only if $p_{ii}q_{ii} = 0$ for each i = 1, 2, n, which is equivalent to $PQ = \mathbf{O}$ (the ranks of the matrices *P* and *Q* are the number of their 1 on the diagonal).

Problem 3. The sequence $a_0 = 0$ and $a_n = 2n(a_{n-1}+1)$ is given for $n \ge 1$. Find:

$$\sum_{n=1}^{\infty} \ln\left(1 + \frac{1}{a_n}\right).$$

Solution: Lets consider the partial sum

$$\sum_{n=1}^{N} \ln\left(1 + \frac{1}{a_n}\right) = \ln\prod_{n=1}^{N} \left(1 + \frac{1}{a_n}\right) = \ln\frac{a_{N+1}}{2^{N+1}(N+1)!}.$$

From the recurrent expression we obtain

$$\frac{a_{N+1}}{2^{N+1}(N+1)!} = \frac{a_{N+1}}{2(N+1)} \frac{1}{2^N N!} = \frac{a_N + 1}{2^N N!} = \frac{a_N}{2^N N!} + \frac{1}{2^N N!}$$

Inductive

$$\frac{a_{N+1}}{2^{N+1}(N+1)!} = \sum_{k=0}^{N} \frac{1}{2^k k!}$$

Therefore

$$\lim_{N \to \infty} \sum_{n=1}^{N} \ln \left(1 + \frac{1}{a_n} \right) = \ln \sum_{k=0}^{\infty} \frac{1}{2^k k!} = \ln \sqrt{e} = \frac{1}{2}.$$

Problem 4. Let
$$a_n = \sum_{k=2n}^{\infty} \frac{(-1)^k}{k}$$
.
a) Prove: $\int_n^{\infty} \frac{dx}{2x(2x+1)} < a_n < \int_{n-1}^{\infty} \frac{dx}{2x(2x+1)}$.
b) Find: $\lim_{n \to \infty} na_n$.
c) If $\lim_{n \to \infty} na_n = \alpha$, find: $\lim_{n \to \infty} n(na_n - \alpha)$.

Solution:

a) Following from

$$a_n = \sum_{k=n}^{\infty} \left(\frac{1}{2k} - \frac{1}{2k+1} \right) = \sum_{k=n}^{\infty} \frac{1}{2k(2k+1)}$$

and inequalities

$$\int_{k}^{k+1} \frac{dx}{2x(2x+1)} < \frac{1}{2k(2k+1)} < \int_{k-1}^{k} \frac{dx}{2x(2x+1)}.$$

b) From a) we have

$$\int_{n}^{\infty} \frac{dx}{(2x+1)^2} < \int_{n}^{\infty} \frac{dx}{2x(2x+1)} < a_n < \int_{n-1}^{\infty} \frac{dx}{2x(2x+1)} < \int_{n-1}^{\infty} \frac{dx}{(2x)^2},$$

i.e.

$$\frac{n}{2(2n+1)} < na_n < \frac{n}{4(n-1)}.$$

$$\lim_{n \to \infty} \frac{n}{2(2n+1)} = \lim_{n \to \infty} \frac{n}{4(n-1)} = \frac{1}{4} \implies \lim_{n \to \infty} na_n = \frac{1}{4}.$$
c) We will estimate
$$\left| \sum_{k=n}^{\infty} \frac{1}{2k(2k+1)} - \int_{n-\frac{1}{2}}^{\infty} \frac{dx}{2x(2x+1)} \right|.$$

$$\int_{k-\frac{1}{2}}^{k+\frac{1}{2}} \frac{dx}{2x(2x+1)} = \frac{1}{2} \ln \frac{2x}{2x+1} \Big|_{k-\frac{1}{2}}^{k+\frac{1}{2}} = \frac{1}{2} \ln \frac{2k^2 + k}{2k^2 + k - 1} = \frac{1}{2} \ln \left(1 + \frac{1}{2k^2 + k - 1} \right) = \frac{1}{2k(2k+1)} + O\left(\frac{1}{k^4}\right).$$
Then

$$\left| \sum_{k=n}^{\infty} \frac{1}{2k(2k+1)} - \int_{n-\frac{1}{2}}^{\infty} \frac{dx}{2x(2x+1)} \right| = O\left(\sum_{k=n}^{\infty} \frac{1}{k^4}\right) = O\left(\frac{1}{n^3}\right).$$

Consequently

$$a_{n} = \int_{n-\frac{1}{2}}^{\infty} \frac{dx}{2x(2x+1)} + O\left(\frac{1}{n^{3}}\right) = \frac{1}{2}\ln\frac{2n}{2n-1} + O\left(\frac{1}{n^{3}}\right) =$$
$$= \frac{1}{2}\ln\left(1 + \frac{1}{2n-1}\right) + O\left(\frac{1}{n^{3}}\right) = \frac{1}{2(2n-1)} - \frac{1}{4(2n-1)^{2}} + O\left(\frac{1}{n^{3}}\right),$$

whence

$$\lim_{n \to \infty} n \left(na_n - \frac{1}{4} \right) = \lim_{n \to \infty} \left(\frac{n^2 - n}{4(2n - 1)^2} \right) = \frac{1}{16}.$$